29,770 research outputs found

    Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement

    Evaluation of large area crop estimation techniques using LANDSAT and ground-derived data

    Get PDF
    The results of the Domestic Crops and Land Cover Classification and Clustering study on large area crop estimation using LANDSAT and ground truth data are reported. The current crop area estimation approach of the Economics and Statistics Service of the U.S. Department of Agriculture was evaluated in terms of the factors that are likely to influence the bias and variance of the estimator. Also, alternative procedures involving replacements for the clustering algorithm, the classifier, or the regression model used in the original U.S. Department of Agriculture procedures were investigated

    Effects of Capping on the (Ga,Mn)As Magnetic Depth Profile

    Full text link
    Annealing can increase the Curie temperature and net magnetization in uncapped (Ga,Mn)As films, effects that are suppressed when the films are capped with GaAs. Previous polarized neutron reflectometry (PNR) studies of uncapped (Ga,Mn)As revealed a pronounced magnetization gradient that was reduced after annealing. We have extended this study to (Ga,Mn)As capped with GaAs. We observe no increase in Curie temperature or net magnetization upon annealing. Furthermore, PNR measurements indicate that annealing produces minimal differences in the depth-dependent magnetization, as both as-grown and annealed films feature a significant magnetization gradient. These results suggest that the GaAs cap inhibits redistribution of interstitial Mn impurities during annealing.Comment: 12 pages, 3 figures, submitted to Applied Physics Letter

    Photoluminescence and spectral switching of single CdSe/ZnS colloidal nanocrystals in poly(methyl methacrylate)

    Full text link
    Emission from single CdSe nanocrystals in PMMA was investigated. A fraction of the nanocrystals exhibiting switching between two energy states, which have similar total intensities, but distinctly different spectra were observed. We found that the spectral shift characteristic frequency increases with the pump power. By using the dynamic shift in the spectral position of emission peaks, we were able to correlate peaks from the same nanocrystal. The measured correlation is consistent with assignment of low energy lines to phonon replicas.Comment: 5 pages, 4 figure

    Efficient spatially-resolved multimode quantum memory

    Full text link
    We propose a method that enables efficient storage and retrieval of a photonic excitation stored in an ensemble quantum memory consisting of Lambda-type absorbers with non-zero Stokes shift. We show that this can be used to implement a multimode quantum memory storing multiple frequency-encoded qubits in a single ensemble, and allowing their selective retrieval. The read-out scheme applies to memory setups based on both electromagnetically-induced transparency and stimulated Raman scattering, and spatially separates the output signal field from the control fields

    Weak-coupling phase diagrams of bond-aligned and diagonal doped Hubbard ladders

    Full text link
    We study, using a perturbative renormalization group technique, the phase diagrams of bond-aligned and diagonal Hubbard ladders defined as sections of a square lattice with nearest-neighbor and next-nearest-neighbor hopping. We find that for not too large hole doping and small next-nearest-neighbor hopping the bond-aligned systems exhibit a fully spin-gapped phase while the diagonal systems remain gapless. Increasing the next-nearest-neighbor hopping typically leads to a decrease of the gap in the bond-aligned ladders, and to a transition into a gapped phase in the diagonal ladders. Embedding the ladders in an antiferromagnetic environment can lead to a reduction in the extent of the gapped phases. These findings suggest a relation between the orientation of hole-rich stripes and superconductivity as observed in LSCO.Comment: Published version. The set of RG equations in the presence of magnetization was corrected and two figures were replace

    Uncovering a pressure-tuned electronic transition in BiSrYCu2O8 using Raman scattering and x-ray diffraction

    Full text link
    We report pressure tuned Raman and x-ray diffraction data of Bi1.98Sr2.06Y0.68Cu2O8 revealing a critical pressure at 21 GPa with anomalies in six physical quantities: electronic Raman background, electron-phonon coupling, spectral weight transfer from high to low frequency, density dependent behaviour of phonon and magnon frequencies, and a compressibility change in the c-axis. For the first time in a cuprate, mobile charge carriers, lattice, and magnetism all show anomalies at a distinct critical pressure in the same experimental setting. Furthermore, the Raman spectral changes are similar to that seen traversing the superconducting dome with doping, suggesting that the critical pressure at 21 GPa is related to the much discussed critical point at optimal doping.Comment: 5 pages, 4 figures, submitted to PR

    Independent ferroelectric contributions and rare-earth-induced polarization reversal in multiferroic TbMn2O5

    Full text link
    Three independent contributions to the magnetically induced spontaneous polarization of multiferroic TbMn2O5 are uniquely separated by optical second harmonic generation and an analysis in terms of Landau theory. Two of them are related to the magnetic Mn3+/4+ order and are independent of applied fields of up to 7 T. The third contribution is related to the long-range antiferromagnetic Tb3+ order. It shows a drastic decrease upon the application of a magnetic field and mediates the change of sign of the spontaneous electric polarization in TbMn2O5. The close relationship between the rare-earth long-range order and the non-linear optical properties points to isotropic Tb-Tb exchange and oxygen spin polarization as mechanism for this rare-earth induced ferroelectricity.Comment: 8 pages, 5 figure

    Nucleon polarizabilities in the perturbative chiral quark model

    Full text link
    The nucleon polarizabilities alpha(E) and beta(M) are studied in the context of the perturbative chiral quark model. We demonstrate that meson cloud effects are sufficient to explain the electric polarizability of nucleon. Contributions of excite quark states to the paramagnetic polarizability are dominant and cancel the diamagnetic polarizability arising from the chiral field. The obtained results are compared to data and other theoretical predictions.Comment: 25 pages, 18 figures, 2 table

    Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization

    Get PDF
    The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) alpha- and HP1beta-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1alpha, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1alpha; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1alpha association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1alpha distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1alpha from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1alpha-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function
    corecore